Voronoi tessellations in the CRT and continuum random maps of finite excess
نویسندگان
چکیده
Given a large graph G and k agents on this graph, we consider the Voronoi tessellation induced by the graph distance. Each agent gets control of the portion of the graph that is closer to itself than to any other agent. We study the limit law of the vector Vor := (V1/n, V2/n, ..., Vk/n), whose i’th coordinate records the fraction of vertices of G controlled by the i’th agent, as n tends to infinity. We show that if G is a uniform random tree, and the agents are placed uniformly at random, the limit law of Vor is uniform on the (k − 1)dimensional simplex. In particular, when k = 2, the two agents each get a uniform random fraction of the territory. In fact, we prove the result directly on the Brownian continuum random tree (CRT), and we also prove the same result for a “higher genus” analogue of the CRT that we call the continuum random unicellular map, indexed by a genus parameter g ≥ 0. As a key step of independent interest, we study the case when G is a random planar embedded graph with a finite number of faces. The main idea of the proof is to show that Vor has the same distribution as another partition of mass Int := (I1/n, I2/n, ..., Ik/n) where Ij is the contour length separating the i-th agent from the next one in clockwise order around the graph.
منابع مشابه
Symmetry-Break in Voronoi Tessellations
We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional streng...
متن کاملPercolation on random Johnson–Mehl tessellations and related models
We make use of the recent proof that the critical probability for percolation on random Voronoi tessellations is 1/2 to prove the corresponding result for random Johnson–Mehl tessellations, as well as for twodimensional slices of higher-dimensional Voronoi tessellations. Surprisingly, the proof is a little simpler for these more complicated models.
متن کاملCentroidal Voronoi Tessellations : Applications and Algorithms ∗ Qiang Du
A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods f...
متن کاملCentroidal Voronoi Tessellations: Applications and Algorithms
A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods f...
متن کاملGrid generation and optimization based on centroidal Voronoi tessellations
Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a region such that the generating points of the tessellations are also the centroids of the corresponding Voronoi regions. Such tessellations are of use in very diverse applications, including data compression, clustering analysis, cell biology, territorial behavior of animals, and optimal allocation of resources. In this pape...
متن کامل